首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68595篇
  免费   7818篇
  国内免费   2662篇
电工技术   1043篇
技术理论   1篇
综合类   2793篇
化学工业   25392篇
金属工艺   10234篇
机械仪表   1301篇
建筑科学   1875篇
矿业工程   938篇
能源动力   1362篇
轻工业   9064篇
水利工程   312篇
石油天然气   1079篇
武器工业   337篇
无线电   2637篇
一般工业技术   16579篇
冶金工业   2974篇
原子能技术   261篇
自动化技术   893篇
  2024年   280篇
  2023年   1635篇
  2022年   2284篇
  2021年   3171篇
  2020年   2949篇
  2019年   2522篇
  2018年   2793篇
  2017年   3169篇
  2016年   3190篇
  2015年   3305篇
  2014年   3958篇
  2013年   5078篇
  2012年   4436篇
  2011年   5508篇
  2010年   3719篇
  2009年   4026篇
  2008年   3340篇
  2007年   3633篇
  2006年   3480篇
  2005年   2706篇
  2004年   2654篇
  2003年   2259篇
  2002年   1806篇
  2001年   1205篇
  2000年   1005篇
  1999年   775篇
  1998年   685篇
  1997年   578篇
  1996年   475篇
  1995年   453篇
  1994年   336篇
  1993年   239篇
  1992年   245篇
  1991年   193篇
  1990年   243篇
  1989年   229篇
  1988年   83篇
  1987年   56篇
  1986年   61篇
  1985年   68篇
  1984年   68篇
  1983年   33篇
  1982年   56篇
  1981年   7篇
  1980年   35篇
  1979年   6篇
  1978年   6篇
  1975年   6篇
  1974年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
《Ceramics International》2022,48(7):9324-9329
(K,Na)NbO3 (KNN)-based ceramics have been proven to be formidable candidates among lead-free piezoelectric materials, yet poor reproducibility always hinders their progress. In the present study, the effects of low lithium substitution on the electrical properties and microstructure of (K0.5Na0.5)1-xLixNbO3 (KNLN) ceramics were investigated. All samples were synthesized by the sol-gel method. The Curie temperature (TC) of the ceramics shifted to higher temperature and gradually decreased the monoclinic-tetragonal (TM-T) phase transition. Li+ substitution had a prominent effect on the ferroelectric properties and improved the piezoelectric coefficient (d33) up to 181 pC/N. X-Ray Diffraction (XRD) studies and Field Emission Scanning Electron Microscopy (FESEM) images revealed an inevitable tetragonal tungsten bronze (TTB) secondary phase, which was formed during the preparation process. It was demonstrated that the volatilization of Li+ cations facilitated TTB growth. The coexistence of two different phase structures proved to enhance the KNN piezoelectric performance.  相似文献   
92.
《Ceramics International》2022,48(2):1642-1658
The conditions for the preparation of the solid solutions of a binary system of barium-strontium titanates with the substitutions in the A-sublattice with the rare-earth elements (REE), including the solid-phase synthesis, mechanical activation and sintering of dispersed-crystalline products by the conventional ceramic technology, were optimized. The presence (absence) of the impurity phases was established depending on the size effect of the REE. The precision X-ray diffraction analysis revealed the features of the phase formation in the studied solid solutions and showed that the “behavior” of the structural characteristics of the solid solutions with the participation of the REE is determined by the limiting conditions of the isomorphism and anion excess of the media under study. An assumption is made about the nature of the formation of a fine-grained landscape of the modified solid solutions, associated with the multicluster structure of the crystallite structure and the formation of the ballast phases during their synthesis. The dependences of the dielectric properties of the solid-state solution on the external influences – temperature, frequency of an alternating electric field and strength of a constant field – have been established. The possibility of choosing on the basis of the obtained data, promising for practical applications of the compositions is shown.  相似文献   
93.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   
94.
《Ceramics International》2022,48(3):3652-3658
Digital light processing (DLP) is one of the most important additive manufacture technologies to fabricate ceramic parts with complex geometries. Compared with pure photosensitive resin, the cure performance of ceramic suspensions is obviously different due to the optical property change after the addition of ceramic powders. In this paper, a unique oxidation process was used to modify the optical properties of nitride powders including AlN and Si3N4. The properties of oxidized ceramics were investigated and the cure performance of ceramic suspensions was then characterized. The effect of oxidation time on cure performance was evaluated. The results showed that for AlN, oxidation process leads to the smaller cure depth and smaller excess cure width as compared with non-oxidized AlN and for Si3N4, oxidation process leads to the larger cure depth and larger excess cure width as compared with non-oxidized Si3N4, indicating that both refractive index and light absorbance of ceramic powders have obvious effects on cure behaviors. Additionally, the cure behavior of oxidized ceramic suspension in this study shows that the relationship of cure depth vs. incident energy agrees well with Beer- Lambert model, but the excess cure width vs. incident energy is not consistent with quasi Beer-Lambert model due to the nature of digital micromirror device (DMD).  相似文献   
95.
《Ceramics International》2022,48(5):6208-6217
Three different coatings, namely TiAlN, TiAlN (external)/NbN (internal) and NbN (external)/TiAlN (internal), were deposited on cemented carbides by arc ion plating. The comparative investigation conducted in this study elucidates the effect of the NbN layer and coating systems on the growth, mechanical properties, and tribological performance of the coatings. The results showed that the surface of the TiAlN and TiAlN/NbN coatings was smoother when TiAlN served as the external layer. The NbN/TiAlN coating, wherein NbN formed the external layer, had a much rougher but more symmetrical surface. With the introduction of the NbN layer, the increased micro stress induced a lower adhesion strength in the TiAlN/NbN and NbN/TiAlN coatings. The TiAlN/NbN and NbN/TiAlN coatings exhibited higher hardness and hardness/effective elastic modulus (H/E*). During the friction test, when the temperature was elevated to 700 °C, the tribological performance of the monolayer TiAlN coating was the lowest because of the TiO2-induced breakage of the dense tribo-oxide film. The NbN layer participated in the formation of a NbOx film at elevated temperatures, which was responsible for the high tribological performance of the two bilayer coatings. When the NbN layer was on the outermost layer and in direct contact with the elevated temperature atmosphere, the NbN/TiAlN coating generated a tribo-oxide film with high integrity, and its coefficient of friction decreased by 27% of that at room temperature. Therefore, the NbN/TiAlN coating exhibited the highest wear resistance at 700 °C.  相似文献   
96.
《Ceramics International》2022,48(10):14192-14200
In this study, mold powder slurries with high solid loading and low viscosity were prepared during the ball-milling process for improving the homogeneity and mechanical properties of granules after spray-drying. The effect of ball-milling parameters, such as solid loading, binder/dispersant content, and ball-milling time, on the flowability, dispersibility, stability, and rheological behavior of mold powder slurries was systematically investigated by rheology observation and sedimentation tests. As these parameters varied, the slurry exhibited the shear-thinning behavior of a non-Newtonian fluid with a shear rate range of 0–50 s?1, which was adequately described by the Herschel-Bulkley model. The optimal parameters that optimized the flowability, dispersibility, and stability of the slurry, along with its rheological behavior, were chosen as follows: solid loading, 60 wt%; modified sodium carboxymethyl cellulose binder content, 1.0 wt%; sodium tripolyphosphate dispersant content, 0.5 wt%; ball-milling time, 60 min.  相似文献   
97.
98.
《Ceramics International》2022,48(10):14301-14306
Recently, the progress of electronic devices toward miniaturization has strongly promoted development of multifunctional materials possessing multiple desirable properties. In this study, we develop and fabricate 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr multifunctional ceramics which show simultaneously considerable electric-field-induced strain and bright green light emission properties. With the introduction of Er3+, the ceramics gradually transform from non-ergodic relaxor phase to ergodic relaxor phase which could reversibly transform to ferroelectric phase under the electric field. As a result, with improving Er3+ content, the shape of the polarization-electric field loops of the ceramics become pinched, and it is obvious that the negative strain disappears while the positive strain gradually increases and reaches a maximum value 0.46% at x = 1.2 mol%. Besides, After the ceramics are poled, the light emission peak are greatly enhanced attributed to the decreased crystal symmetry and increased domain size, and is the strongest at x = 1.2 mol%. These results indicate that 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr ceramics are good candidates for developing multifunctional optoelectronic devices.  相似文献   
99.
《Ceramics International》2022,48(3):3600-3608
In the present study, the mechanical properties and microstructure of C/Mullite composites with a PyC-SiC double-layer interfacial coating after annealing were systematically studied to evaluate the evolution of thermal stability in an inert atmosphere and a vacuum. The C/Mullite composites annealed in the inert atmosphere exhibited better thermal stability than those annealed under the vacuum. The main factor for failure of the composites was carbothermal reduction. The activation temperature of carbothermal reduction in composites in the inert atmosphere was ~100 °C higher than that in the vacuum. Once carbothermal reduction was activated, the microstructure of composites was destroyed, resulting in a significant weight loss and mechanical property degeneration. The degeneration of mechanical properties was unrecoverable.  相似文献   
100.
《Ceramics International》2022,48(6):7897-7904
High-performance B4C-PrB6 composites were prepared via hot-pressing sintering with matrix phase B4C and with 2–5 wt% Pr6O11 as additive. The effects of different sintering processes and Pr6O11 content on the microstructure and mechanical properties of the composites were studied in detail. It is found that increasing sintering temperature and pressure will contribute to the densification of B4C-PrB6 composites. Coarse grains are formed in B4C without additives at high temperature conditions, resulting in the decrease of the densification. Pr6O11 can effectively hinder the formation of coarse grains and finally promote the densification of the composites. The main toughening mechanisms of composites was crack deflection. The composites with 4 wt% Pr6O11 prepared at 2050 °C and 25 MPa had the best comprehensive mechanical properties. The relative density, hardness, flexural strength and fracture toughness reached to 98.9%, 37.6 GPa, 339 MPa and 4.4 MP am1/2, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号